Biomedical Engineering

Projects that involve the application of engineering principles and design concepts to medicine and biology for healthcare purposes including diagnosis, monitoring and therapy.  Prominent biomedical engineering applications include the development of biocompatible prostheses, various diagnostic and therapeutic medical devices ranging from clinical equipment to micro-implants, common imaging equipment such as MRIs and EEGs, regenerative tissue growth, pharmaceutical drugs and therapeutic biologicals.

Subcategories:

Biomaterials and Regenerative Medicine
Biomechanics
Biomedical Devices
Biomedical Imaging
Cell and Tissue Engineering
Synthetic Biology
Other

Biomaterials and Regenerative Medicine (BMR): These studies involve the creation or use of biomaterials or biocompatible materials to construct a whole or a part of a living structure. These studies can include scaffolds for recruiting or supporting regenerative cells or tissues or the engineering designs for creating the correct environment for regenerative growth.

Biomechanics (BIE): Studies that apply classical mechanics (statics, dynamics, fluids, solids, thermodynamics, and continuum mechanics) to understand the function of biological tissues, organs, and systems and solve biological or medical problems. It includes the study of motion, material deformation, flow within the body and in devices, and transport of chemical constituents across biological and synthetic media and membranes.

Biomedical Devices (BDV): The study and/or construction of an apparatus that use electronics and other measurement techniques to diagnose, prevent and/or treat diseases or other conditions within or on the body.

Biomedical Imaging (IMG): The study and/or construction of an apparatus or technique that combines knowledge of a unique physical phenomenon (sound, radiation, magnetism, etc) with high speed electronic data processing, analysis and display to generate an image to support biomedical advances and procedures.

Cell and Tissue Engineering (CTE): Studies that utilize the anatomy, biochemistry and mechanics of cellular and sub-cellular structures in order to understand disease processes and to be able to intervene at very specific sites.

Synthetic Biology (SYN): Studies that involve the design and construction of new biological parts, devices and systems. Such studies include biological circuit design, genetic circuits, protein engineering, nucleic acid engineering, rational design, directed evolution and metabolic engineering.

OTH Other (OTH)Studies that cannot be assigned to one of the above subcategories.